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Motion of relativistic particles in standing wave fields 

W Beckert, R Meckbacht and H MitterS 
t Institut fur Theoretische Physik der Universitat Tubingen, D-7400 Tubingen, West 
Germany 
$ Institut fur Theoretische Physik der Universitat Graz, A-8010 Graz, Austria 

Received 18 July 1978 

Abstract. The motion of relativistic particles in the field produced by two circularly 
polarised, electromagnetic plane waves travelling in opposite directions is studied. The 
Klein-Gordon equation is used, i.e. spin effects are neglected, and only motion along the 
beam direction is considered. If the electromagnetic beams carry opposite polarisation, the 
particle energy shows a band structure. The transmission of a plane particle wave through a 
long device is calculated. Transmission occurs only if the particle energy corresponds to an 
allowed energy band. For other energies the particles are totally reflected. For equal 
polarisation a similar structure emerges for the particle momentum along the beam 
direction. The observation of the band structure poses serious experimental problems. 

1. Introduction 

The propagation of particles in electromagnetic wave fields has found renewed interest 
in connection with intense laser fields. The most characteristic feature of particles 
propagating in monochromatic plane wave fields is the concept of quasi-levels. If p is 
the energy-momentum vector of the particle outside the field and k the (four-) wave 
vector of the field, the wavefunction is a superposition of plane waves with four- 
momenta 

pn = pea + nk,  pea = P + ( e a ) ' k / 2 p k ,  n = 0 , * 1 , * 2 ,  . . .  (1) 

p e f f  is a constant (the square of an effective mass) which depends on the mass of the 
particle as well as the intensity and polarisation of the field. All effects due to the 
influence of the external field can be understood in terms of the intensity-dependent 
effective mass and the quasi-level structure. Despite the simplicity of the concept, little 
has been achieved with respect to an experimental verification of its consequences. The 
main reason is the fact that the order of magnitude of most effects is controlled by the 
parameter 

2 

2 u = e a / m c  , 
related to the charge e and mass m of the particle and the maximal amplitude a of the 
wave. For electrons we have, in terms of the irradiation density S (in W cm-') and the 
wavelength hL (in cm) of the laser, 

U' 2 7.5 X 10-"A;S, 

and this is only appreciable for extremely strong lasers. In addition, one has to observe 
that the effective mass is essentially of classical origin, so that the quantum nature of the 
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particle does not enter vitally. It therefore seems worthwhile to look for different field 
configurations in which a genuine quantum effect could also emerge (Meckbach 1976). 

It was noted some time ago by Berson and Valdmanis (1973) that the Klein-Gordon 
equation for a particle in an external wave field can be solved exactly in a special 
situation. The field has to be made up of two circularly polarised, monochromatic plane 
waves of equal frequency propagating in opposite directions (so that a standing wave is 
produced), and the particle (three-) momentum has to be parallel to the wave vector. 
The physical consequences have, however, not been pursued very far. Especially, 
almost no quantitative consequences have been derived. We shall therefore take up 
this problem again. In contrast to the work of Berson and Valdmanis (1973), where a 
quantised electromagnetic field is also considered, we shall treat the standing wave as a 
prescribed classical field, which is an excellent approximation for high intensities. The 
two possibilities of opposite/equal polarisation of the waves forming the external field 
shall be treated separately, since the qualitative and quantitative consequences are 
entirely different. 

2. Opposite polarisation 

The Klein-Gordon equation for a spinless particle in an external field A ”  reads 

[(i + EALl)(i a, +EA,) - K 2 ] 4  = 0. (2) 
Here E = e/hc is related to the charge, and K = mc/h = 277/Ac to the mass/Compton 
wavelength (Ac) of the particle. 

The particle current is 

j ”  = i 4 * p 4  + 2 ~ A ” 4 * 4 ,  (3) 

a T b = a a @ b - b a ” a .  (4) 

a,j” = 0.  (5  j 

where we have used the symbol 

As a consequence of equation (2) the current must be conserved, 

If the waves producing the field are propagating in the * Z  direction, the vector 
potential reads 

(6) 

where w is the frequency and a the intensity parameter. The vector potential (6) is 
invariant under a time translation combined with an appropriate rotation, 

A ”  = 2a cos wz (0, cos wxo, -sin wxo, O), 

A k ( x o ,  ~ ) = D ~ ‘ ( w b ) A ’ ( x o + b ,  x), (7) 
where Dk‘(cy) describes a rotation about the z axis by an angle cy, and b is an arbitrary 
constant. This symmetry is all that remains here from the larger class of symmetry 
transformations advocated by Richard (1972) for a plane wave with circular polarisa- 
tion. As in other problems, the symmetry has consequences for the wavefunction. If the 
momentum of the particle is in the z direction, it is invariant with respect to the rotation 

t The invariance expressed in equation (7) also allows for a solution of the Diracequation in this case. This will 
eventually be published in a separate paper. 
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Dk‘. Hence we have time translation invariance, and the dependence on time can be 
separated. 

In what follows we shall consider this simple situation. Since the potential (6) does 
not depend on x and y, we may split off an exponential 

4(x)  = + b o ,  z )  exp[i(xpx +YP,)~,  (8) 

with constant px, py. If we assume 

Px = Py = 0, (9) 

the remaining differential equation for + is invariant under time translations (thus 
energy is conserved) and can be separated. With the ansatz 

+(xo, z )  = 4(5) exp(-ixopo), 

where 

5 = wz, PO = El he, 
we obtain the Mathieu equation 

(d/d52+A-212 COS 25)4(5)=0,  

with the parameters 

1 = Ea/w = vhL/hc  

A = ( p i  -K2)/W2-212. 

This equation would result from a one-dimensional Schrodinger problem with an 
‘effective potential’ -A2 and an ‘energy’ - p i  -K’. 

Before we discuss the solutions, we shall write down the components of the current 
density (3) in terms of q5. We have - 

i o  = 2p04*4, j z  = -iwq5 *(d/dnq5, 

( j x ,  j,) = 4ea4*4 cos  COS wxo, -sin o x o ) ,  (15) 

(dld5)iz = 0. (16) 
The standard theory of Mathieu’s equation (see e.g. Meixner and Schafke 1954) tells us 
that 

and the continuity equation reduces to 

q5*(T) = P(*t) exp(*M (17) 

form a set of fundamental solutions of equation (11). Here P is a periodic function, 

P(5 + = P(5), 

and the characteristic exponent ?(A, 1’) is a constant. The solutions (17) are linearly 
independent, unless T is an integer. If q5 is expanded in a Fourier series, 

the coefficients satisfy a three-term recurrence relation. Trying a physical inter- 
pretation, we could say that each term in (18) corresponds to a quasi-momentum on the 
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reciprocal lattice, 

p , ( r ) =  fw(2r+7),  r = 0 , * 1 , * 2  ) . . . .  (19) 

Inserting the solutions (17) into (15), we observe that j z  can only be constant if either ( a )  
T is complex and iz = 0, or (6) T is real. 

In case ( a )  the solutions are called unstable and are unbounded for large positive or 
negative values of 6. io and j,,, are unbounded, and the solutions cannot be normalised. 
The charge contained in a finite interval in 6 would increase exponentially with the 
length of that interval. In addition, the quasi-momentum (19) becomes complex. If we 
require the total charge (which is constant in time) to be finite, we must rule out the 
unstable solutions. In case ( 6 )  the solutions are called stable and are physically 
meaningful, since q5 and j ”  are bounded and the quasi-momentum is real. 

Concrete values of T = ~ ( h ,  1 2 )  must be calculated from equation (12). For given 
values of 1 2 ,  stable solutions exist only within certain domains of A. Because of relation 
(14), this means that the energy shows a band structure as for particles in solids. In the 
A, 1’ plane the stable regions are situated between the characteristic curves A = a,,(!’) 
and A = l 1 , , + ~ ( 1 ’ )  numbered by an integer n = 0 , 1 , 2 ,  . . . . This represents the so-called 
stadility chart. At these curves the characteristic exponent assumes the values n and 
n + 1 respectively. The curves can be determined by numerical analysis (see Meixner 
and Schafke 1954). The axis 1’ = 0 is a stable region for any A > 0, as can also be seen 
directly from the differential equation. At sufficiently high energies, i.e. for 

2 2  p i - K 2 > > 1  W , 

the periodic term in equation (12) is a small perturbation, and the solution will remain 
stable (i.e. the energy spectrum remains continuous) almost everywhere. In order to 
discover the band structure we have therefore to consider moderate energies or very 
high intensities. From the stability chart we see that the stable regions become more 
and more narrow for increasing 1’ (for fixed values of A). For large values of this 
parameter the width of the stable region decreases exponentially, and we obtain 
practically discrete energy eigenvalues numbered by n. It has to be observed that the 
asymptotic domain 1’ >>A can be reached experimentally with available intensities v 
(compare (13)). Then we can use the asymptotic expansion valid for large 1 2 ,  

(20) A --212+2(2n + 1)1 - i (2n2+2n + 1)  - (1/321)[2n3+3n2+ 3n + 1 ) + .  . . . 
We shall take into account only the first two terms: the next term contributes less than 
1% for 13 100 and n < 1/10. Then we obtain the energy formula 

E, =mc2[1+2(2n+l)A]”2-mc2[1+(2n+l)A],  (21) 

A =  k W 2 / K 2 =  V A C I h L .  (22) 

where the splitting constant A is given by 

Thus the level distance does not, in fact, depend on n and becomes very small in 
practice. (Note, however, that the level (or band) structure is a genuine quantum 
phenomenon.) 

On the characteristic curves a,, and bn+1 a fundamental system of solutions of 
equation (12) consists of the periodic Mathieu functions ce,,(6/f2) and sent1(,$/I2) 
respectively, and two other linearly increasing non-periodic solutions. For a given 
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value of n, the periodic functions (with period T or 2 ~ )  can be used as eigenfunctions 
corresponding to E,, for large 1’. These are 

ce,,([, 1’) = F,, + o(r3I4), (23) 

1 2 )  =sin [F,, +0(/-3/4), (24) 

F,, = ( . r r ~ / 2 ) ’ ~ 4 ( n ! ) - ” 2 ~ , ( 2 J 1 ~ ~ ~  5), (25) 

where F is given in terms of parabolic cylinder functions 

(26) n / 2  - x 2 / 4  D,,(x) = (-1)” ex2 /4 (d /d~)”  2- e H, , (x/h) ,  

which are the eigenfunctions of the harmonic oscillator. The physics behind this result 
is easy to understand in terms of the analogy with a Schrodinger problem as mentioned 
before. The effective potential A’ has maxima at [ = 0, T, 2 ~ , .  . . and minima at 
5 = r / 2 , 3 ~ / 2 ,  . . . , where it assumes the value zero. For large l 2  these maxima become 
very large, so that the particle densky is concentrated close to the minima of the 
potential (this can be seen by computing io with the asymptotic eigenfunctions), where 
the potential may be approximated by an oscillator potential. We note that in this case 
the two eigenfunctions (23) and (24) are nearly identical apart from the fact that se,+’ 
and ce,, have the opposite sign in every second minimum of the potential. The z 
component of the current vanishes asymptotically. The transverse components oscil- 
late in time and are concentrated close to the minima of the effective potential, but 
vanish at these points because of the factor cos 5. 

The band structure of the energy emerges for smaller values of 1. In order to obtain a 
qualitative picture we may, as in solid state physics, define a line in the A, l 2  plane, which 
marks the ‘middle’ between the asymptotic domain (1’ large) and the region where the 
particle is almost free ( 1 2  small), by 

A = 21’, i.e. E t h  = mc2(1 +4v2)’/’. (27) 

This line marks the classical threshold for transmission of particles (Lata1 1977). Close 
to this curve we have energy bands. The corresponding eigenfunctions can be 
represented in terms of Wannier functions, which can be constructed as in solid state 
physics. 

Putting in numbers, it becomes clear that the band structure shows up at small 
energies in general. If the threshold corresponds to a kinetic energy E t h -  mc2 of 1 keV 
for electrons, we need Y’ - or AtS - 1 .3  x lo7. With the strongest infrared lasers 
constructed for fusion research one may obtain the corresponding irradiation densities; 
however, it seems hardly possible to manage a clean standing wave with these lasers. 
Perhaps one should consider microwave devices in this context, although the large value 
of AZS presents problems for these also. In any case, it has to be noted that the 
corresponding value of I*  comes out very large. 

Close to the threshold we cannot use the asymptotic formulae (20) or (23) and (24), 
since in this domain both A (or n )  and 1’ are large. Asymptotic formulae which are valid 
in this region can be found in a very general investigation by Langer (1934). The 
characteristic curves in the vicinity of the classical threshold are given by 

a,,(1’)=21’+41{(n+~)~-41}/(log641+C+~/2)+0(1),  (28) 

b,,(12)=21’+41{(n - $ ) ~ - 4 l } / ( l o g 6 4 1 + C - ~ / 2 ) + 0 ( 1 ) ,  (29) 

where C denotes Euler’s constant. If a point on the straight line A = 21’, which marks 
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the classical threshold, happens to lie in a stable band a,(l’) S A  6 b,+I(l’), the 
corresponding band number is given by 

n = [ 4 1 / ~  - f ] ,  ( 3 W  

n = [ 4 1 / ~ + + ] ,  (30b) 

with [ x ]  denoting the largest integer smaller than x .  The width of the n th stable band is 

while if it comes to lie in an unstable band b , ( f2 )  4 A C a,(12), it is given by 

A,A = b,+1(12) - a,(f’)  = 2 h { L  + (2n + l ) ~  - 81}/(L2 - ~ ’ / 4 ) ,  

6, A E a,  ( 1 2 )  - b, (1’) = 2 h { L  - (2n.n - 81)}/(L2 - .n2/4), 

(31) 

and the width of the n th unstable band is 

(32) 

with L = log 641 + C. Note that A,A and & A  are roughly proportional to l/log 1 for 
large I ,  since the last term in the numerator is small due to equations (30a, b). In 
contrast to the widths of the bands, the distances between the lower or upper edges of 
the energy bands are independent of n, 

a,+1(12)-a,(12j = 4 1 ~ / ( L + ~ / 2 ) ,  b , + ~ ( f Z ) - b , ( 1 2 ) = 4 1 ~ / ( L - ~ / 2 ) .  (33) 

The consequences of equations (31)-(33) are illustrated in figure 1, if one observes that 
Ap = AA/41 for constant f 2  near the classical threshold (cf equation (43)). 

If, on the other hand, the threshold is at very small energies (which will happen for 
lasers with realistic irradiation densities), one has to work far above threshold. In this 
case, one can use perturbation expansions in powers of l 2  even for large 1 2 ,  as long as 
l’/r is small enough. We have 

A 3 r2(i  + 14/2r4 + 0 ( 1 ~ / 7 ~ ) > ,  (34) 

valid for any (integer or non-integer) r >> 1.  The corresponding expansion for the 
solution reads (for non-integer r )  

l 2  i l 2  l 2  i3 me, -- eirc[l- - - sin 25 + -(cos 25 + -(cos 45 - 1)) + O( ?)I. 
7 2  27 8 r 

The width of the n th stable band (n >> 1)  is 

A,A=2n+1-14/n3+0(18) ,  

whereas the width of the n th qble zone decreases as 

S,A=0(12“/n”-’). 

3. Transmission and reflection 

(35) 

(37) 

In order to understand the physical aspects of our solution, we shall now consider the 
penetration of a plane particle wave through the standing wave field. The correspond- 
ing classical problem has been treated before by Lata1 (1977). General features of wave 
propagation in a periodic, continuous medium are discussed in an excellent book by 
Brillouin (1946) and also apply here. Thus we can expect that the field configuration 
shows transmission bands if the energy corresponds to a stable zone. These bands 
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should become broad for energies above the classical threshold (27) and narrow below 
this value. 

For the calculation we shall assume that the field is present in a domain 

- ( m  + $1 r s 6 s ( m  + (38) 

(here m is a large integer) and vanishes outside this region. The wavefunction in the 
interior region is given by a superposition of Mathieu functions 

4(6) = Dme, (S)+Eme, ( -O ,  r > o .  (39) 

4(6) = A eiPc + B  e+g, 6 s -(m +&r, (40) 

4 (6) = F eips, t a ( m + $ ) n .  (41) 

p 2 =  ( p i  - K 2 ) / u 2  = A+212.  

Outside this region we assume 

Since the energy is conserved, we have, because of equation (14), 

(42) 

Thus a given value of p fixes the characteristic exponent 7. The constants A, B, D, E, F 
are related by the boundary conditions for qb and 4’ at the boundaries of the region 
(where the field vanishes). The transmission and reflection coefficients of the device are 
defined as usual by 

T = F*F/A*A, R = B*B/A*A. (43) 
Computing the z component of the current (15), which is constant because of equation 
(16), we obtain 

u-ljz = 2p(A*A - B*B) = 2pF*F. 

Thus we have 

T + R = l .  

If now the momentum p of the incoming particle corresponds to an unstable region, the 
current will vanish for an infinite domain (for a finite region we obtain in fact 
exponential damping with m ) ,  and we have 

T = 0 ,  R = 1,  (44) 
i.e. the particle wave is totally reflected. For the same reason we obtain this result also 
for very large values of l 2  (asymptotically). 

If the momentum corresponds to a stable region, transmission is possible. Using the 
periodicity properties of Mathieu functions, we obtain from the boundary conditions 

where 
T = 1 - R = (1 - G2)’/[1 + G4-2G2 cos 47rr(m +$)I, (45) 

G = ( P K ( T ) - N ( r ) ) I ( p K ( r ) + N ( 7 ) )  (46) 
is given in terms of Mathieu functions at 6 = ~ 1 2 ,  

N ( T )  =C (-1In(r + 2 n ) c z n  = - h e :  (;) exp (-F). - 
n 

(47) 



806 W Becker, R Meckbach and H Mitter 

We note that the transmission coefficient oscillates rapidly between the values 

[( 1 - G2)/(1 + G2)]’ S T 1. 

The average value is 

(T)=(l-G2)’/(1+G4).  (48) 

At the band edges we have T = 1, but (T) = 0. 
In order to see what happens, we have computed (T) as a function of p for given 

values of l 2  near the classical threshold. The values of A and I’ are such that the doubly 
asymptotic formulae of Langer (1934) had to be employed. The results are shown in 
figure 1, where the arrow marks the classical threshold. The values of 1 2 =  
0.163 x lo4, x lo6, x lo8 correspond to kinetic energies of 0.98 X lo-’, x 1, X 10’ eV 
for A L  = 1 pm and 0.98 x x lo-’, x 1 eV for A L  = 10 pm. The pattern mentioned 
at the beginning of this section is evident from figure 1. 

From equation (33) we know that the separation Ap of neighbouring allowed zones 
decreases slowly as (log l)-’. This fact may pose severe restrictions on the mono- 
chromaticity of the electrons to be used in experiments. A quantitative analysis would 

P 

Figure 1. Average transmission coefficient as a function of p for different values of 12, ( a )  
1.63 x lo’, ( b )  1.63 x lo5, ( c )  1.63 x lo3. The arrow marks the classical threshold. 
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require the use of wave packets allowing for an energy spread of the particles. We note, 
finally, that along the classical threshold, using Langer’s formulae, the average trans- 
mission coefficient can be shown to fulfil ( T )  L 3. Figure 2 exhibits the decrease of the 
average transmission coefficient for constant 7 as a function of 1’. 

Figure 2. Average transmission coefficient as function of j 2  for T = 3.6. The arrow marks 
the classical threshold. 

Above threshold the width of the transmission bands increases rapidly. Thus the 
reflection zones become narrow and well separated from each other, so that an energy 
spread of the incoming electrons should not affect the spectrum of the reflected 
particles. At energies very far above threshold we can compute the transmission 
coefficient using (35). The result is 

(49) 

which gives very small values for the reflection coefficient in realistic cases. To see this, 
we have only to observe that, within our approximation, 

( T )  = 1 - (R) -- 1 - 2 ( 1 / ~ ) ~ ,  

41’/~’ -41’/(h+ 21’) = [E?h - (mc’)’]/[E’ - (mc’)’], 

which is for non-relativistic particles the ratio of the kinetic energy at threshold to the 
actual kinetic energy. 

4. Equal polarisation 

In this case the vector potential becomes 

A” = 2a cos wxo(O, cos wz, sin wz, 0) 

Ak(x0,  Z) =Dk’ ( -w6)A‘ (~O,  z + b ) ,  

(50) 

(5 1) 

and is invariant under a space translation combined with an appropriate rotation, 

where Dk‘ is the same rotation matrix as in equation (7). 
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Performing the same steps (8), (9) as before we obtain an equation which is invariant 

r l (xo ,  z )  = T(P) exp(izp,), (52) 

7) = wxo+ v/2, (53) 

(dZ/dt72+I;-212 COS 2 7 ) ~ ( t 7 ) = 0 ,  (54) 

under translations in z directions. Thus we put 

where now 

and obtain the Mathieu equation 

with 1’ given by equation (13) and 

I; = ( p : + K ’ ) / U  ’ + 2 1’ ( 5 5 )  

The further steps can be carried through formally as before. Now the individual terms 
in the Fourier series can be interpreted to have quasi-energies 

p o ( r )  = *(2r + ~ ) w  (56)  

rather than quasi-momenta, since the variable 7) is proportional to the time coordinate. 
For the stability consideration we have to observe that now the roles of io and j L  are 
exchanged, since the continuity equation becomes 

(d/d7))jo = 0. (57) 

In the unstable case we have now j o  = 0: the norm (and the charge density) of the 
unstable solutions vanishes. Since io is not positive definite in the Klein-Gordon 
theory, we cannot draw the conclusion that T must vanish, however. The other 
components of the current increase exponentially for large (positive or negative) values 
of 77, as does T, and the quasi-energies (56) are complex. The total charge of these 
solutions is zero; obviously they describe pair production from the vacuum. If we want 
to have a one-particle situation, we must rule them out. For the stable solutions, T and 
j ”  is bounded with respect to 7) and the quasi-energies are real. Practically, however, 
there is little chance to observe a band-type structure for the momentum p z  and, 
correspondingly, pair production from the vacuum between the bands. 

This can be shown as follows. Since p :  has to be positive, we obtain from ( 5 5 )  

I; > ( A L / A c ) ~  + 212. (58 )  

The asymptotic formula (20) cannot be used for 2 since this would violate (58). For 
optical devices the first term on the r.h.s. is very large. Even for appreciable values of I’ 
we have therefore E>>?, and this means that we have in practice a continuous 
spectrum. This situation could be changed only if the second term in (58)  was no longer 
small compared with the first one. Because of (13) this can happen only for extremely 
high intensities. We shall therefore not pursue this case further. 

5. Conclusions 

It has been shown that a band structure emerges if particles move in the field of a 
standing wave. This structure refers to the particle energy if the fields making up the 
standing wave carry opposite polarisation, whereas we have momentum bands for equal 
polarisation. Observation of the energy bands is very hard in direct experiments with 
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particle beams, because the classical threshold for transmission lies at very low energies 
for realistic intensities and wavelengths. The momentum bands can hardly be seen at 
all, since the distance between the bands is too small. We emphasise, finally, that the 
existence and the shape of the energy and momentum bands are genuine intensity- 
dependent quantum effects, which do not have manifest counterparts in the plane wave 
case. 
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